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Abstract~ It is shown that surface/lutter instability may be triggered by the simultaneous influence
of non-associativity and boundary conditions even if. taken independently, neither the elastic­
plastic constitutive law (satisfying deviatoric associativity) nor the boundary conditions (no applied
traction rates) would lead to flutter. More specifically, it is shown that, for orthotropic elastic­
plastic constitutive tensors with an orthotropy axis tangent to the rate-traction-free boundary, the
onset of surface flutter instability coincides with the incipience of plasticity for any non-associative
flow rule, whenever the normal to the boundary does not coincide with one of the other two
orthotropy axes. In the case of deviatoric associativity and coaxiality between the directions of
orthotropy and the normal and tangent to the rate-traction-free boundary. surface flutter instability
may also occur, but only for unusual values of material parameters.

Additional results and discussion are also presented for the onset of stationary surface waves
in associative and non-associative elastic··plastic bodies. In contrast to the onset of surface flutter
instabilities, the condition for the onset of stationary surface waves involves material properties
only, that is, it does not discriminate among different orientations of the rate-traction-free boundary
with respect to the material orthotropy directions.

I. INTRODUCTION

The well-posedness of the initial-boundary-value problem of the mechanics of solids
requires the dynamical equations of motion to be pointwise hyperbolic. Equivalently, the
three acceleration wave-speeds must be real and strictly positive [see, for example Truesdell
and Noll (1965), Section 71].

The squares of the latter are the eigenvalues of the acoustic tensor, which inherits the
major symmetry property from the tensor ofconstitutive moduli. Consequently, the squares
of the wave-speeds are real for elastic-plastic solids with associative flow rules, and loss of
hyperbolicity occurs when the smaller wave-speed vanishes (Hill, 1962), a phenomenon
referred to as a stationary discontinuity. The quasi-static interpretation of a stationary
discontinuity as a strain localization has been exposed by Mandel (1962) and Rice (1976)
for materials with both associative and non-associative flow rules. Both Mandel and Rice
pointed out the destabilizing influence of non-associative flow-rules; Asaro and Rice (1977)
investigated the destabilizing effects of various constitutive features that lead to loss of the
major symmetry of the tensor of constitutive moduli. The above works have been at the
root of a number of papers, whose essential aim was to improve upon the somewhat
resistant behaviour of classic elastic-plastic solids that yield too late an onset of strain
localization as compared with experimental data.

For constitutive equations that lack the major symmetry, the acoustic tensor is not
symmetric, and loss of hyperbolicity may occur through a mode other than a stationary
discontinuity. This mode is termed, after Rice's terminology, a flutter instability: it cor­
responds to the square of a wave-speed becoming complex. It has been the subject of a few
investigations so far. Loret et al. (1990) show that it is excluded for a wide range of elastic­
plastic solids, namely, those whose flow rules are associative with respect to the deviatoric
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components of the plastic strain rate tensor only, a constitutive feature referred to as
deviatoric associativity. Ottosen and Runesson (1991) improve slightly upon the former
result by showing that, if the unit normals to the plastic potential and to the yield surface
are coaxial, with their eigenvalues arranged in the same order, then once again flutter
instability is excluded. A route to develop constitutive equations that may lead to the onset
of flutter instability has been explored by An and Schaeffer (1992) : in the analysis of two­
dimensional models, they show that (even for associative flow rules) strict hyperbolicity
does not hold; thus it might be possible to devise constitutive perturbations involving loss
of the major symmetry of the constitutive moduli and leading to the onset of flutter
instability. This idea is reconsidered in the usual three-dimensional elastic-plastic context
by Loret (1992). He considers constitutive perturbations of solids with deviatoric asso­
ciativity and obtains the following results, which, interestingly enough, bear much quali­
tative resemblance to the work reported in this paper: any infinitesimal constitutive per­
turbations from deviatoric associativity, making the normals to the plastic potential P and
to the yield surface Q non-coaxial, lead to the onset of flutter instability for a properly chosen
plastic modulus; in contrast, a finite amount of deviation from deviatoric associativity is
required to reach the onset of flutter when the normals to the plastic potential and the yield
surface are kept coaxial. Notice that this last result is in agreement with the work ofOttosen
and Runesson (1991): that finite amount of deviation from deviatoric associativity is the
amount necessary to change the order of the eigenvalues of P and Q.

Notice that the above results are local, that is, they may be viewed as concerning a
point of an infinite solid. Another route to the onset of flutter instability may therefore be
the incorporation of the effects of boundary conditions on a finite or a semi-infinite body.
This is the investigation that we envisage in this paper. One motivation for this study stems
from previous analyses of the strongly destabilizing effects of Coulomb's friction law.
Martins et al. (1992) consider the motion of a rigid half-plane over a linear isotropic half­
plane with frictional contact. For a sufficiently large friction coefficient and Poisson's ratio,
growing oscillations develop at points just below the contact line, a situation similar to that
of Rayleigh waves with a complex wave-speed, that is, a surface flutter instability. Similar
results are obtained when the deformable half-plane is viscoelastic (Martins et al., 1994) or
when finite deformations are accounted for through neo-Hookean elastic behaviour (Mar­
tins and Faria, 1991). These observations may contribute to an explanation of the origins
of the Schallamach waves, which act as "waves of detachment" that cross the contact
area from front to rear with rapidly alternating states of contact and loss of contact
(Schallamach, 1972).

Clearly, flutter instability requires the governing equations to possess some kind of
non-self-adjointness, although, as pointed out above, non-self-adjointness is not a sufficient
condition for the onset of flutter instability in elastic-plastic solids. The lack of symmetry
of the tensor of constitutive moduli implies the dynamic equations of motion to be non­
self-adjoint, whereas, for frictional contact problems, non-self-adjointness is induced by the
boundary conditions. Here we adopt a somewhat intermediate position by considering an
elastic-plastic solid with deviatoric associativity filling a half-plane with a rate-traction-free
boundary. So, taken independently, neither the constitutive equations nor the boundary
conditions lead to the onset of flutter instability. However, we shall derive conditions under
which their simultaneous influence will indeed lead to the onset of flutter instability.

We are not aware of any other attempt to exhibit flutter instability due to boundary
effects. On the other hand, this analysis can be viewed as an instance where an initial­
boundary-value problem becomes ill-posed while the rate-field equations are still hyper­
bolic. In that sense, contact can be made with analyses of the existence of stationary waves
in bounded or semi-infinite solids. For example, Benallal et al. (1989) note that failure of
the complementing condition is equivalent to the existence of stationary surface waves.
Conditions for the existence of these waves are analysed by Dowaikh and Ogden (1990)
for particular pre-stressed incompressible elastic solids and by Needleman and Ortiz (1991)
for elastic-plastic solids. The existence of stationary intelj'acial waves between two perfectly
bonded half-spaces is analysed by Dowaikh and Ogden (1991), and some connection with
the conditions for existence of stationary surface waves is established; this problem is also
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considered by Needleman and Ortiz (1991). Suo et al. (1992) show that, when the interface
between two elastic-plastic half-spaces is compliant and involves a length-scale, the onset
of stationary interfacial waves depends on the wavelength and there exists in some cir­
cumstances a minimum wavelength for the instability mode.

This paper is organised as follows. In Section 2, we present the field and boundary
conditions, and we obtain a variational formulation for the problem of finding dynamic
surface solutions in an elastic-plastic half-space where plastic loading holds pointwise while
the applied traction rates at the boundary are null. The analysis is restricted to orthotropic
tensors of constitutive moduli. The resulting variational formulation trivially leads to the
expected result that surface flutter instability is ruled out for associative flow rules.

The analysis delineates two cases: the coaxial case, in which one orthotropy direction
is normal and the others are tangent to the free surface, and the non-coaxial case, in which
only a tangent to the free surface coincides with one of the orthotropy directions. Section
3 is devoted to the analysis of the coaxial situation. We first describe the constitutive
equations corresponding to an elastic-plastic solid with deviatoric associativity (Section
3.1), and then we obtain the field and boundary conditions for motions that are obtained
by the superposition of surface modes (Section 3.2). To be relevant, flutter instability
must occur prior to body or surface stationary waves. The onsets of these are given an
explicit form in Sections 3.3 and 3.4. However, it is not possible to give an explicit
expression for the plastic modulus at the onset of flutter instability. Nevertheless, we are
able to show that this onset may be characterized by a pair of inequalities involving only
material parameters (Section 3.5). To establish this result we use some properties of the
solutions of a biquadratic equation with complex coefficients established in Appendix A.
The conclusion drawn from this coaxial case is somewhat disappointing, since, quan­
titatively, it shows that flutter is excluded for the usual constitutive parameters (Section
3.6).

The analysis of the non-coaxial case presented in Section 4 leads to our main result,
which is in strong contrast with the coaxial case: we show that, in the non-coaxial case, the
onset offlutter instability coincides with the incipience ofplasticity, that is, the critical plastic
modulus at the onset of flutter instability is infinite. This result holds for any type of non­
associative flow rules, thus including deviatoric associativity. We therefore have an instance
in which a semi-infinite body may undergo flutter instability whereas the infinite body filled
with the same material does not (recall the result on solids with deviatoric associativity
reported by Loret et al. (1990)).

Specifically, we assume that, at the current stress, the yield surface and the plastic
potential are smooth; moreover, we neglect co-rotational terms in the stress derivative
involved in the rate-constitutive equations. This restriction is not thought to be of practical
importance for many applications in civil engineering and geomechanical analyses.
However, the results presented here are not expected to apply in the case in which the
objective stress-rate introduces terms in the constitutive moduli that break the major
symmetry property as, for example, the Jaumann rate does.

It should also be clear that the present work is devoted to defining the onset of flutter
instability. The question of whether the phenomenon will occur or not during specific
loading processes is not addressed here. In addition, the exclusive consideration of the
plastic loading regime is consistent with the linearized stability analysis performed here,
but it precludes an assessment of the full consequences of the instabilities detected, par­
ticularly when they are of the flutter type. Indeed, in this case, the growing oscillatory
nature of the solutions may be expected to lead in relatively short times to situations of
local plastic unloading, which, of course, are quite apart from the linearized loading regime.
Similarly, the validity of the analysis of Martins and his co-workers ceases, strictly speaking,
if contact is lost or if (unloading) stick occurs. From a linearized dynamic stability analysis
in the (loading) slip regime, it is not possible to conclude if the dynamic instability gives
rise to an oscillatory phenomenon much like stick/slip or if it has negligible consequences
in the overall behaviour of the system.

The reader may wonder why we consider independently the so-called coaxial and non­
coaxial cases, although the latter case embodies the former one. We proceed in this manner
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free surface

e3

Fig. I. The lower half-plane is filled with an elastic-plastic solid, and the boundary x, = 0 is rate­
traction-free at any time.

for clarity of presentation. Actually, the results obtained in the coaxial and non-coaxial
cases are quite different, and so are the analytical developments leading to them.

2. PROBLEM STATEMENT

2.1. Governing equations
Let us consider a semi-infinite and homogeneous elastic-plastic body with a rate­

traction-free boundary. Let (e), ez, e3) (see Fig. 1) be a fixed orthonormal reference frame
with the origin on the boundary of the body. Here eJ is tangent to the free surface, ez is the
outward normal, and e3 is the out-of-plane direction. We denote by x = (x" xz, X3) the
position vector of the particles of the body.

Since the analysis assumes that the material undergoes small perturbations relative to
a given reference state, all time derivatives coincide with the material time derivative denoted
by a superposed dot.

The material is isotropic in its elastic properties, and we shall restrict the analysis to
orthotropic elastic-plastic solids. The requirement that the elastic strain-energy function is
positive-definite places a restriction on the tensor of elastic moduli Ee that allows one to
normalize the Lame modulus A, the stress tensor (1, and the mass density p by dividing
them by the elastic shear modulus IL Thus formally J1 = 1, and the inequality

(1)

holds, which is known to imply the existence of one elastic shear wave with speed Cs (of
multiplicity two) and one elastic longitudinal wave with speed ct such that

e _ [~J J Z e _ [A +2J J Z
Cs - < CL -

P p

The tensor of elastic-plastic moduli E has the form

1
E = Ee - H(Ee: P) @ (Q: Ee),

(2)

(3)

where P and Q are the unit outward normals to the smooth plastic potential g and to the
smooth yield surface f, respectively. Here, the symbol @ denotes the dyadic product, and
a double dot product represents the tensor inner product between adjacent dyads (so
that, in Cartesian components, adjacent indices are summed pairwise). The modulus His
restricted to strictly positive values in order to exclude locking materials and is given by

where h is the plastic modulus and

H = h+he , (4)
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hc = P:Ec :Q.
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(5)

For a given velocity field v with gradient 'lv, the material response is plastic if, simul­
taneously,fis zero and Q: EO: 'lv is positive; the resulting stress rate u is then given by

u = E:'lv.

Otherwise, the material response is elastic and

u = EO: 'lv.

(6)

(7)

In this analysis, we shall assume that plastic loading (eqn 6) holds pointwise.
It is of importance to emphasize that only for associative plastic flow rules does the

tensor of elastic-plastic moduli enjoy the major symmetry E ukm = E kmU ; on the other hand,
it always has the minor symmetries E Ukm = Ei;km and E ukm = E Umk (i,j, k, m = 1,2,3).

In this paper, we shall be concerned with the propagation of small plane disturbances
orthogonal to e3, which is assumed to be an axis oj'orthotropy of the elastic-plastic material
response. The problem that we wish to solve is thus to find a plane velocity field
v (x I, X2, t) = VI (x], X 2, t) e l + V2 (x], x 2 , t) e2 (v 3 = 0) in the half-plane X2 ::::; 0 such that, for
all times t, the rate form of the (two) equations of linear momentum balance

(8)

holds for X2 < 0 and the rate-traction-free boundary conditions

(9)

hold on X2 = O. In eqn (8) and from now on, unless stated otherwise, latin indices i,j, k, m
run from I to 2, the summation convention over repeated indices is in force, and a lower
comma denotes a partial spatial derivative.

Using the constitutive relation (6), we obtain the system of two partial differential
equations

(10)

for X2 < 0, together with the two boundary conditions at X2 = 0

(II)

2.2. Surface solutions
In the present analysis, we seek surface solutions v to eqns (10) and (II) in the form

(12)

Here nt is a positive real number that represents the angular frequency of the solutions
along the e t axis; Vk(n I x2) are sufficiently smooth functions defined on ]- CXJ, 0] with an
appropriate decay as X2 ---> - CfJ, namely

(13)

c is a complex number such that Re (c) represents the speed at which the solution in eqn
(12) propagates along the e l axis and nl 1m (c) represents the rate of exponential growth
or decay of that solution in time. Note that the well-known (surface) Rayleigh waves in an
elastic half-space are of the form ofeqns (12) and (13) with c2 real and positive. Here, we
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shall be particularly interested in detecting the situations in which, by influence of the non­
associative elastic-plastic behaviour, c2 ceases to be a positive real number.

Throughout the paper, we adopt the usual notation for complex numbers, namely, i is
such that i2 = -1, Re (z) and 1m (z) denote the real and imaginary parts of a generic
complex number z = Re (z) +i 1m (z), and t = Re (z) -i 1m (z) is the complex conjugate
of z.

Inserting eqn (12) in eqn (10), we obtain a system of linear and homogeneous second­
order ordinary differential equations

AV"+BV'+(C-X2 I)V = 0,

where A, B, and Care 2 x 2 matrices defined componentwise by

(14)

(15)

(16)

(17)

and V is the vector of length 2 with components Vk(nlx2)' The symbol I is used to denote
the unit tensor ofappropriate order or its matrix representation, a superposed prime implies
a derivative with respect to nlx2 and

(18)

Note that eqn (14) is the dynamic counterpart of equation (IV.2.13) of Benallal et al.
(1993). On inserting eqn (12) in eqn (II), the boundary conditions become

(19)

2.3. Variationalformulation
The above eigenproblem can be given a compact and precise variational formulation.

In this respect, note that, in general, the eigenfunctions Vk may be complex functions: an
oscillatory behaviour along the X2 axis is admissible provided that the decay condition, eqn
(13), is satisfied. On the other hand, the non-symmetry of the elastic-plastic tensor moduli
may lead to complex eigenvalues X 2

• Hence, instead of introducing the usual bilinear forms
on spaces of real functions, we shall have to work with sesquilinear forms in spaces of
complex functions.

Formally multiplying eqn (14) by the complex conjugates of arbitrary sufficiently
smooth functions Wk (n l X2), k = 1, 2, with compact support in ] - 00, 0], integrating the
result between - 00 and 0, and performing an integration by parts of the terms involving
E2jkl and E2jk2 , we obtain:

for all such vector functions W. To arrive at eqn (20), use has already been made of the
fact that each test function W is null for Ix2 1sufficiently large. Taking now the boundary
conditions (eqn (19)) into account, we obtain the variational equation:
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a(V, W) = X 2 (V, W),
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(21)

and

r
o

(V, W) = (W, V) =
.J ·x

(22)

(23)

The derivation above motivates the adoption ofthe following appropriate functional setting
and statement for the eigenproblem at hand (I denotes the interval] - lfJ, O[) :

Problem 2.1. Find the squares of the speed of propagation-like scalars X E C and the
functions V E V = (H 1(I))2, V of- 0, such that eqn (21) holds for all WE V.

Note that the Hilbert space V is a space of complex functions on I, the symmetric
sesquilinear form (V, W) defined by eqn (22) is the inner product on (L 2 (/)f, and a (V, W)
is a continuous sesquilinear form on V. It is then possible to show, by using a generalized
Green's formula [cf. Showalter (1977), p. 58], that any V E V is a solution to Problem 2.1 if
and only if it satisfies (in (L2 (/))2) the system of second-order ordinary differential equa­
tions, eqn (14), and also satisfies the boundary conditions, eqn (19). In addition, any V E (HI
(/))2 satisfies the decay condition of eqn (13) [cf. Brezis (1983), Corollaire VIII.8].

An important result follows easily from this variational statement. In the case of an
associative plastic flow rule, the tensor of elastic-plastic moduli enjoys the major symmetry
Eijkm = E kmij and the sesquilinear form, eqn (23), is symmetric, i.e.

a(V. W) = a(W, V) \IV, WE V.

Consequently, we have proved:

(24)

Proposition 2.2. : For associative plastic flow rules, the scalars X 2 that solve Problem
2.1 are necessarily real.

3. ELASTIC-PLASTIC SOLIDS COAXIAL WITH THE FREE BOUNDARY

In this section, the material response is assumed to satisfy deviatoric associativity and
to be orthotropic, with the axes (ej, e2, e3) as orthotropy axes. We derive the conditions that
lead to the onset of flutter instability and we show, quantitatively, that flutter is excluded
for the usual constitutive parameters.

We proceed as follows. We first detail the constitutive equations and the field and
boundary conditions. We then derive the conditions that ensure that the field equations
remain hyperbolic and that stationary surface waves are excluded: the underlying reason
for this approach is that we are interested in surface flutter instabilities that occur before
other surface or body instabilities.
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3.1 Constitutive equations
When expressed in the orthotropy axes, the constitutive equations (6) take the form:

~ll = LII~" +LI2~22}
(In = L 21 f.11 +Lnf.n ,
0"12 = 2A I2

where t is the strain-rate tensor, given by:

(25)

(26)

For an elastic-plastic solid obeying deviatoric associativity, identification of the four
scalar coefficients L 11 , L n , L 12 , and L 21 requires specification of three constitutive plastic
functions (plastic modulus h, friction angle tf;, and dilatancy angle X), a triaxiality angle
(see eqn (32) below) and the elastic properties:

L ii = Eiiii = A + 2 - r (Nx+ S;;)(N)/J + S,J , (no sum on i) }
(27)

Llj=EiW=A-r(Nx+Sii)(N>/J+Sjj)' i#j (nosumoni,nosumonj) ,

with

(28)

4
r = HCOS tjJcos X,

where H is defined by eqn (4) and he by eqn (5), namely:

he = p:Ee:Q = 2costjJcosX+3(A+~)sintf;sinx.

(29)

(30)

To arrive at eqns (28)-(30), one has assumed the deviatoric parts of the unit normals to
the plastic potential P and the yield surface Q to be the same, i.e.

~ I}P = cos XS + sin X--r=
~3

~ I'
Q = costjJS+sintf;----;:::

)3

(31 )

where S is a unit deviatoric tensor that may embody any kind of anisotropy. In the
orthotropy axes, a single scalar () E [0, n/3] modulo 2n/3 defines completely the unit deviator
S:

~ 12 2 .
Sii = V3"coS[()-3"(I-I)n], i= 1,2,3(nosumoni). (32)

Notice that the assumption that the material response is orthotropic in the axes (ej, e2, e3)
is equivalent to S being principal in these axes.

3.2. Field equations and boundary conditions
Solutions to the system of linear and homogeneous second-order ordinary differential

equations (eqn (14» are sought in the form of linear combinations of functions
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(33)

where Vk is an undetermined constant amplitude and N = n2/n t is a complex number that
satisfies

1m (N) < o. (34)

Thus we allow the solution to oscillate along the eraxis, but, in accordance with eqn (13),
we require its amplitude to decay exponentially along this axis.

Satisfaction of the rate field equations (14) for a non-trivial mode V requires the
following algebraic system in VI and V2 to be indeterminate:

(L II +N2 -X2 )VI +(L I2 + I)N

(I+L 21 )N V 1 +(L22 N 2 +I-X2
)

V 2 = O}.
V 2 = 0

(35)

Thus the complex scalar N solves the biquadratic equation with complex coefficients

where, assuming L 22 # 0 (see Section 3.3 for justification),

(36)

(37)

The scalar A defined below will be shown to playa cardinal role in the surface instability
analysis:

= 4(A+ I) -4(cos IjJcosX)H~I {4NxNI'J +2(Nx + NljJ(SI I+Sd (38)
A A 2 A 2 A 2+A(SII-S22) +2(SII +S22)}.

Note that the complex speed of propagation-like scalar X is still undefined. To close
the problem, we require the boundary conditions, eqn (19), at the surface X 2 = 0 to be
satisfied. Since eqn (36) for N is biquadratic, it has at most two solutions N satisfying the
decay condition, eqn (34) ; hence we can construct V (n lx 2) by superposition of two modes
of the form of eqn (33) :

(39)

Here, each N(') = n~') Inl' rJ. = 1,2, is precisely one of the two solutions ofeqn (36) satisfying
the decay condition, eqn (34); the corresponding U('l, rJ. = I, 2, satisfies eqn (35) with
N=N(').

Inserting this kinematic in the boundary conditions, eqn (19), one obtains a second
linear system for the scalars VI') and V~» :
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o )

L: NI') vI') + V~,) = 0

J L, ~ ~:,',+L"N'" U," ~ 0 .

(40)

If (L]2 + I) NIx) is assumed to be non-zero for 'l. = 1, 2, each ratio V<;) / VIa) can be computed
from the first of eqns (35): the system of eqn (40) may then be viewed as a linear system
for the pair (V\I), V\2». The indeterminacy of this system yields:

(41)

Alternatively, each ratio VIa) /v~a) can be computed from the second of eqns (35) if (1 +L 2l )

N(x) is non-zero. Indeterminacy of the resulting linear system for the pair (V~I), V~2» yields:

(42)

Leaving aside momentarily the possibility N(2) - N(I) = 0, eqns (41) and (42) may be
combined to give:

Thus the square of the speed of propagation-like scalar X solves the cubic equation:

the coefficients Co, ('\, C2, and C3 being given by

('o=L 22 (l-L 22 ) )

C,I : L"(L" - L" +21\) .
C2 - -/1(2L22 +11)

c, = /12

(44)

(45)

We consider now the special cases left aside so far: N(]) = N(2) = N in eqn (41) or in
eqn (42), and (L 12 + I )N(') = 0 or (l + L 21 )N(x) = 0 for some a. in eqn (35). For that purpose,
we mention that, throughout this study and for reasons explained in Section 3.3, the
coefficients L] I and L 22 will be required to be strictly positive.

In the first case, N( I) = N
(
2) = N implies that there exists a single propagation mode

that meets the boundary conditions of eqn (19). Then eqns (35) and (40) imply X = 0
together with /1 = 0, L 12 + 1 = 0, N

2 = L 21 /L 22 < O. Thus the single-mode kinematics may
lead to a stationary surface wave X = 0 but under more restrictive conditions than the two­
mode kinematics (see Section 3.4).

In the second case, (L 12 + I)NI') = 0 for one value of a. is equivalent to L 12 + 1 = 0 for
the mode 'l. to be a surface mode; then eqn (35)1 implies (N(a»2 = X 2 -L II for both modes
a. = 1,2; thus either N(I) = N

(2
), a possibility treated just above, or NO) = - N(2), but then

one of the modes is not a surface mode. A similar conclusion holds for the possibility that
(I + L 2I )N(') = 0 for one value of a..

Now that we have established the equations for the main unknowns, namely, the
propagation direction n = (nJ, n2) and the wave-speed c, a few words are necessary to
explain the analysis of instability developed in the sections that follow.
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The general procedure and the main difficulty. Given the constitutive parameters, we
first calculate the three squares of the wave-speeds by solving the cubic equation (44) ; for
each solution, we calculate by eqn (36) the four associated directions of propagation, out
of which we select, when they are available, those two that satisfy the decay condition, eqn
(34); henceforth, these are denoted by N(l) and N(2). The key point is that these two
solutions may not satisfy the boundary conditions at the free surface represented, for
example, by the first equality of eqn (43). Indeed, it follows from the first two equalities in
eqn (43) that (N(]) N(2))2 is equal to P and so by construction the roots of eqns (36) and
(37) always satisfy eqn (43) in absolute value. However, the signs of these two quantities
implied by the decay condition of eqn (34) may be in contradiction with the signs involved
in eqn (43). Thus, in order to check these equalities, it is sufficient to check the signs of
N(l)N(2) and, for example, the sign of the last term in eqn (43). This verification is greatly
facilitated by the analytical tool developed in Appendix A.

The nature of the solutions. For solutions that satisfy the field and boundary equations,
we shall delineate four situations depending on the nature of the square of the wave-speed
c2 or equivalently of X 2

:

• if X 2 is real positive, the situation is similar to that of Rayleigh waves for an elastic
solid, the solution being periodic in time (a surface wave);

• if X 2 is zero we have a stationary surface wave; notice that the onset of such a wave is
a priori different from the onset of a stationary body wave since, for the latter,
satisfaction of boundary conditions is not required;

• if X 2 is real strictly negative, the solution explodes as time elapses, and we have a
surface divergence instability;

• if X 2 is complex, the solution grows while oscillating, a situation termed surface flutter
instability.

These four situations correspond (cf. eqn (21)) to the existence of an eigenfunction V E V
(V =1= 0) solution to Problem 2.1, such that a (V, V) is, respectively, positive real, zero,
negative real, or complex.

The "control parameter" and the onset of dynamic surface instabilities. In commenting
on our analysis, it will be assumed that the deformation processes begin when the material
has elastic behaviour (H = + eX) in eqn (29)) and that the modulus H (or equivalently the
plastic modulus h) decreases continuously in the course of the deformation processes. The
parameter H- 1 thus plays the role of a "control parameter" that increases continuously
from zero. Note also that the scalar ~ defined by eqn (38) has the value ~ = 4 (A+ 1) at
H- 1

= 0 and decreases linearly with the "control parameter" H- 1
• At the beginning of the

deformation processes (H- 1 = 0), the cubic equation (44) is nothing but the relevant cubic
factor of the equation [cf. Fung (1965), eqn (13), p. 180, or eqn (eI) in Appendix C] that
is obtained after squaring the characteristic Rayleigh equation [cf. Fung (1965), eqn (12),
p. 180]. In that elastic situation, it is known that only one solution to eqn (44) (the unique
real solution X 2 = (C/C~)2 E [0, I]) does solve the characteristic Rayleigh equation and indeed
corresponds to a surface wave solution. As the "control parameter" H- 1 is increased, we
shall look for situations in which some X 2 solution of eqn (44) ceases to be a positive real
number and the appropriate sign condition on N( I)N(2) is satisfied: the onset of a dynamic
surface instability. Dynamic surface instabilities are, ofcourse, of interest when they precede
possible body instabilities. We shall therefore restrict our analysis by assuming that the
equations ofmotion (10) are hyperbolic: conditions for hyperbolicity of the field equations
are derived in the next section.

Remark 3.1. By using the second equality in eqn (43), the product P (eqn (37)) can be
recast in the following format:

SAS 32-15-D
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Hence, if the squares of the wave-speeds are real, i.e. X 2 is real according to (18), the values
of X 2 are either smaller than min. (1, L tt ) or larger than max. (1, L t1 ), since L 22 will be
required to be strictly positive as already alluded to; furthermore, P is positive or zero.

3.3. Conditions for hyperbolic field equations
We know that, for elastic-plastic solids with deviatoric associativity, loss of hyper­

bolicity coincides with the onset of a stationary body wave, that is c or X = 0, while at least
one N 2 should be non-negative real, because, in an infinite body, only plane waves need to
be considered. Thus, from eqn (36), hyperbolicity is retained if the inequalities below hold
(SB is an acronym for a stationary body wave) :

if So ? 0,

if So ~ 0,

thenSBo : Po-S~!4 > O;}.
thenSBo = Po > 0

(46)

The onset of a stationary wave is then detected by the criterion (see Fig. 2a) :

~f So ? 0, then SBo : Po. -=-S~!4 = 0 ;}.

If So ~ 0 , then SBo = Po - 0
(47)

In eqns (46) and (47) and in the sequel, So and Po denote the values of Sand Pin eqn (37)
for X = O. Note that, at the beginning of the deformation processes (H- ' = 0, ~ = 4
(1\+ 1)), So is equal to -2 while Po is equal to 1.

Let hs be the value of the plastic modulus at which So is zero. Using the constitutive
equations, eqns (27), one obtains:

2cosljlcosx [ [~Nx+Nw J2 [Nx+NwJ2
hs = 1\+2 -(31\+4) S"+2(31\+4) +(31\+4) 2(31\+4)

+ (1\+ 1) - 3/+2 ]\\NwJ (48)

\
\

Hyperbolic
\
\
\

\

"( HIl

(a)

Po 1
regime

(He)

(P)
I Parabolic regime

(b)

[

h > hS
h> hl -)

SB

h=h S-

(-I
h =hSB

Sketch of the regimes of the field equations.

Fig. 2a. Definition of the hyperbolic (H), parabolic (P) and elliptic (E) regimes: (H): the two N'
solutions of (36) are complex conjugate if SBa = Po - S6/4 > 0 (HC) or real negative if
SBo = Po - S6/4 ,,; 0 (HI) ; (P) : one N' solution of (36) is real positive. the other one is real negative;

(E) : the two N 2 solutions of (36) are real positive. Fig. 2b. Characteristic moduli.
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as well as the equivalence relation:

2167

(49)

Now notice that, in the hyperbolic regime, Po = L ll /L 22 is restricted to strictly positive
values. Since L ll and L 22 take positive values for elastic behaviour and vary continuously
with the plastic modulus, they must remain strictly positive in the hyperbolic regime:

(50)

Consequently it can be shown that, for So ~ 0, SEo > 0 is equivalent to

where

H _ 3A+2 [ (~ tanx+tant/J)2
hSB - A+I cost/JcosX - S33+ 2y13

I (A+ I) oJ
+3 (A+2) (tan x-tan t/J)- ,forSo ~O.

For So ::;; 0, SEa> 0 is equivalent to

where h~B) is the value of the plastic modulus at which Po changes sign, i.e.

(51)

Notice that, for 511 = 522 , one has (So = - 2, Po = I), as for elastic behaviour. Thus the
conditions ensuring hyperbolicity, eqn (46), can be rephrased in terms of the plastic modulus
h in the form:

{
eqn (51) ifh ::;; h~.}

h > hSB with hSB defined by .' ,
eqn (52) Ifh ~ hs

(53)

while the onset of a stationary body wave is detected by h = hSB (see Fig. 2b).
In the next sections, we search for surface instabilities that may occur while the field

equations are hyperbolic, that is, for a plastic modulus greater than the value hSB defined
in this section.

3.4. Stationary swface waves and surface divergence instability

3.4.1. Stationary surFace waves. Stationary surface waves are available in the single­
mode kinematics if the following conditions are satisfied (see the discussion of special cases
in Section 3.2):

11=0. L 12 = -I, (54)

In the two-mode kinematics, insertion of the conditions X 2 = 0 in eqns (44) and (45)
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requires only ~ = 0, the boundary conditions, eqns (41) and (42), are automatically satisfied
and, from eqn (37):

Thus, in the hyperbolic regime, stationary surface waves can occur only in the HI regime
(see Fig. 3) for non-associative plasticity, whereas, for associative plasticity, they can occur
only along the parabola Po - 5~/4 = 0, 50 ~ 0, the boundary of the (HI)-(HC) regimes.

Since ~ is linear with respect to H- I, surface stationary waves will be observed in the
HI regime if the plastic modulus hss such that ~ = 0 (55 is an acronym for a stationary
surface wave),

(55)

is larger than the plastic modulus hSB (eqn (52)) defining the onset of stationary body waves
when 50 < 0, and larger than the plastic modulus hs defined by eqn (48) (see Fig. 2b). Thus,
in the hyperbolic regime and since ~ is strictly positive for an elastic material,

{
~ > 0
~=O

excludes stationary surface waves
denotes the onset of stationary surface waves.

(56)

Remark 3.2. Notice that, for associative plasticity, along the curve {5Bo = Po - 56/4 =
0, So ;:, O}, the four solutions N to eqn (36) are real.

Remark 3.3. In both cases of associative and non-associative plasticity, it is not possible
a priori to state if the onset of stationary surface waves always precedes or is always
preceded by the onset of stationary body waves. In the associative case (ljJ = X), we have
(from eqns (51) and (55)) hss = h\t 1 and (from eqns (52) and (55)):

but it is not possible to order hss and hs : that order depends on the values of ljJ = X, A, and
S. If hs ;:, hss = h~tl then, when the monotonously decreasing plastic modulus h reaches
the value hss = hW, we have 50 ;:, 0, so that (from Remark 3.2) the resulting stationary
wave does not have a surface character. If hss > hs then, when the plastic modulus h reaches

Po -5;/4 =0 Po Po -5;/4=0 Po

~
\
\
\
\

1-2,1)
\
\

"- ...... .....
So So

(0) 'b)
Fig. 3. Domains where surface stationary waves may be available in the hyperbolic regime: (a) for
non-associative plasticity: :SBo = Po - Sg/4 < O. Po > 0, So ~ 0) : (b) for associative plasticity:

{SBo = Po -Sg;4 = 0, So ~ 0).
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the value hss ( > h~B))' we have So < 0 and the onset of stationary surface waves is reached
before the onset of stationary body waves. In the non-associative case, we always have

(3A+2)2 ,
h~t/-h,s = l2(A+ I)(A+2) cos ljIcos x(tanx-tanljl)" ~ 0

but the order of hs., , h~B" and h, depends on the values of the parameters ljI, X, A, and S:
as a consequence, the onset of stationary surface waves may precede or be preceded by the
onset of stationary body waves.

Remark 3.4. Further restriction of the investigation domain. Henceforth we shall restrict
the analysis by looking for surface instabilities that occur in the hyperbolic regime and
before the onset of stationary surface waves, i.e. we consider plastic moduli larger than hSB

(eqn (53)) and hss (eqn (55).

3.4.2. Surface dil:ergence instabilities. It may well happen that, during a deformation
process, a solution satisfying the field and boundary conditions and associated with X 2 real
and negative (surface divergence instability) is available in the hyperbolic regime. We show,
then, that this phenomenon cannot occur before the occurrence o.lstationary surface waves.

The solutions to eqn (36) are given in Appendix A (cf. eqn (A5)) : notice that both S
and P are real and that P is positive according to Remark 3.1.

Proceeding as indicated in the Appendix, one can show that, for X 2 real negative, the
product of the solutions NIlI and N(2) that satisfies the decay condition of eqn (34) is, in
the hyperbolic regime, always equal to - p 12 . On the other hand, the boundary conditions
require satisfaction, in particular, of the second equation of eqns (43):

(57)

In the hyperbolic regime, L 22 is positive (relations (50)), so that, for 11 > 0 and X 2 < 0, the
right-hand side of eqn (57) is positive, which contradicts the result N I) NO) = - pl/2 < O.

Thus, as announced above, if available in the hyperbolic regime, stationary surface
waves precede divergence instabilities. We therefore do not investigate the existence of the
latter in more detail.

3.5. Surface flutter instabilities
We investigate the existence and onset of surface flutter instabilities under the restric­

tion made in Remark 3.4. A surface flutter instability will be available if

• a root x 2 to eqn (44) is complex;
• the associated solutions Nil and NO) that satisfy the decay condition (eqn (34)) also

satisfy the boundary condition (eqn (43)).

We now translate these requirements into an analytical form.

3.5.1 Conditionfor equation (44) to admit complex roots. On leaving aside momentarily
the case L 22 = I (see Remark 3.9) and taking into account eqn (50), the condition for the
cubic equation (44) to admit complex roots is that its discriminant R be positive. It is shown
in Appendix B that R can be cast in the form

(58)

where R)(I1) is a polynomial in 11. For 11 > 0, the condition for eqn (44) to admit complex
roots is thus R I > O.
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3.5.2. Satisj'action oj'the boundary condition (equation (43)). A priori, it may happen
that, during a deformation process with decreasing plastic modulus, the boundary condition
of eqn (43) is satisfied with R strictly positive. We shall prove that it is not so: the onset of
flutter instability occurs on part of the domain R = O. To prove this assertion, we first give
a more tractable form to the sign problem to which satisfaction of the boundary condition,
eqn (43), boils down (see discussion on Section 3.2). For that purpose, we shall make use
of the results established in Appendix A.

We demonstrate the following.

Proposition 3.5. A necessary and sufficient condition for the onset of flutter instability
is

where

R = 0, BC> 0, (59)

(60)

and Re (X 2
) denotes the real part of the complex roots of the cubic equation (44), which,

for R = 0, is a double root of that equation.
The proof of Proposition 3.5 is very technical. The scheme of the proof is as follows:

• first, we use the result established in Appendix C that shows that, in the elasticity case,
BC is negative when the discriminant R is positive;

• we next show that, in the upper left quarter (BC < 0, R > 0) of the BC-R plane, the
boundary condition cannot be satisfied (Lemma 3.6) ;

• thirdly, we show that, for R = 0, BC should be positive for the boundary condition to
be satisfied (Lemma 3.7);

• finally, for BC = 0, we find that R cannot be positive (Lemma 3.8).

Thus the domain in which flutter may occur is contained in the upper right quarter
(BC> 0, R ~ 0) and entrance in this domain is possible only along the boundary
(BC> 0, R = 0) (see Fig. 4). To motivate this result, let us note that, through the last
equality in eqn (43) and the definitions of Sand Pin eqns (37), we have:

Im(N1!) N(2») = ~ ~2 BC )

Im(S)=~(l+L22) ,

- Im(P) = W +L]] -2 Re (X 2
)]

(61)

where ~ == 1m (X2)/L22 . We shall prove by using Appendix A that 1m (N1!)N(2») either has
the sign of 1m (S) or, if it has the sign of - 1m (P), this quantity should be positive; both

R

rlmpoSSible path

\.- Be
Onset of flutter instability

Fig. 4. Paths in the (BC, R)-plane during a deformation process.
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cases result in BC > 0, since we are looking for the onset of flutter instability in the
hyperbolic domain and before stationary surface waves, i.e. L II > 0, L 22 > 0 (relation (50»
and ~ > 0 (Section 3.4).

We turn now to prove Lemmas 3.6-3.8 by making extensive use of the results estab­
lished in Appendix A.

Lemma 3.6. For BC < 0 and R > 0, the boundary condition of eqn (43) cannot be
satisfied.

It is shown in Appendix C that flutter is excluded for an elastic response because then
the product E( I) Ell) of the imaginary parts of the values of Nl,)2 is positive, leading to 1m
(Nil) N(1)) and 1m (5) being of the same sign (eqn (A7»; thus, from eqn (61), BC should
be positive if eqn (43) were satisfied, whereas, in Appendix C, we actually find BC to be
negative. Hence, during a deformation process, the single possibility to satisfy the boundary
condition would be to have E( I) E(2) < 0, in which case 1m (N(1) N(1)) and - Im(P) are of
the same sign (eqn (AI2)) and the possibility BC < 0 may not be excluded. Because E(1)
and E 1

2} are continuous functions of the modulus H, the above possibility necessarily entails
passage through E( I) = 0 or £(1) = 0; the possibility E(l) = E(2) = 0 is excluded by eqn
(AI4) because then, according to eqn (6lh, Im(X 2

) should be zero. But, if only one EO is
zero, then according to eqns (A 15) and eqn (61) 12, BC should be positive, in contradiction
to our assumption.

Lemma 3.7. For R = 0, BC should be positive.
To locate the double roots of the cubic polynomial F (Xl) = 0, we plot the first two

of the three functions appearing in eqn (43), namely, with Y = Xl:

F,(Y) = (Y-l)(~-Lll Y)
c L

22
Y ,

Although the proof below requires information on the signs of F 3 and dF3!dY at double
roots, there is no need to plot F3. Indeed, if F, = N,!D) and F2 = NdD 2 , then
F 3 = (N) +N2)!(D 1+D l ); thus, at a point where F I = F2 = F and dFt/dY = dFl!dY = cD,
one has F 3 = F and dF3!d Y = cD. The plots in Fig. 5 delineate six cases according to the
respective order of L I " ~!L 22 , and 1. The limit cases where two or all of these quantities
are equal do not introduce essentially new configurations. As expected, there is no inter­
section point in the interval) min.(l, L II ), max.(l, LI,H (see Remark 3.1). Notice that, in
the associative case, ~/L22 is always smaller than or equal to L I j, so that the three plots in
Figs 5 (d), (e), and (f) corresponding to L)2 L 21 < 0 apply for non-associative plasticity
only. Figure 5(a) is also representative of elastic behaviour.

The configurations Figs 5(a), (b), (e), and (f) may lead to the existence of a double
root. We shall delineate the cases where the double root is smaller than L II < 1 (Figs 5(e)
and (f» and where it is larger than max.(l, L 11 ) (Figs 5(a), (b), and (e». In fact, we shall
show that only the former situation may lead to the onset of flutter instability. Thus the
value of the associated wave-speed C

fLU is always smaller than the elastic shear wave-speed
co •
s·

(63)

and we recover the result established in a more general context in Section 2.3 that flutter
instability is excluded in the associative case.

Before we begin the proof of Lemma 3.7, it is interesting to note that there always
exists a wave with wave-speed (' < c~ up to the onset of flutter, and it is precisely this wave
that gives rise to the flutter phenomenon. Indeed, the existence of a root Y less than 1 is
apparent from the plots in Fig. 5 and is not difficult to prove analytically through continuity
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arguments. However, this wave, which is a Rayleigh wave in the elastic case (see Appendix
C), may cease to be a surface wave and may become a plane wave when SB == P - S2/4 < °
and S> 0, a circumstance observed before the onset of flutter instability for particular
material parameters. But, whether or not the surface wave character is lost, the boundary
conditions of eqn (43) are always satisfied since the values of N(I) or JVl2) are either both
complex or both real: in the first case, JVlI) JVl2) is negative according to eqns (AI2)-(AI4)
as required, since JVlI) JVl2) should be equal to F 3, which is negative after the plots in Fig. 5;
in the second case, the signs of N(') are at our disposal and may be chosen to satisfy eqn
(43). We now consider in turn the four possibilities delineated by Fig. 5.

(1) Let us consider first the case ofa double root, Y < L II when L II < min (!:J./Ln , I)
(cf. Figs 5 (e) and (f». According to eqn (61), 1m (S) and - 1m (P) are of the same sign,
which, by using Appendix A, is also shared by 1m (N(I) N(2». According to the expression
in eqn (61) for 1m (JVl I

) N 2», we deduce that, for the boundary condition of eqn (43) to be
satisfied, BC in eqn (60) should be positive.

(2) The case of a double root Y in the interval ]!:J./Ln , I [ (see Fig. 5(b» does not lead
to flutter. Indeed, we first notice that, at the double root, the slopes of the curves F I(Y)
and F3 (Y) are equal, leading to dF3/dY < °(see Fig. 5 (b» and to BC < 0, because
BC = (dF3/dY) !:J.. Now let us denote by E(1) and El2

) the imaginary parts of the solution
N

2 to eqn (36). According to eqn (A7), if E(1) E(2) > 0, then satisfaction of the boundary
condition of eqn (43) requires BC> ° (cf. eqn (61)d, which excludes flutter. If
E(I) E(2) < 0, Re (N(I) N(2» = F3 should be negative according to eqn (Al3), excluding
flutter for a double root in the interval ]!:J./Ln , I[ (see Fig. 5(b». Thus, whatever the sign
of E(I) E(2) is, flutter is excluded for a double root in ]!:J./Ln , 1[.

(3) We shall now prove that, for a double root, Y> L I, > I (see Figs 5 (a) and (b»,
flutter is excluded because we have simultaneously S > 0, SB < 0, BC < °and E(1) E(2) > 0,
a set of relations that is in contradiction with eqns (A7) and (61)1.2' Using eqns (A2 and
A4) with SB < 0, one has, just at the onset of flutter, i.e. for R slightly positive:

(
1m S)2 Z (1m P)2 1m P

E(1)E(2) = -~ --, Z(Y) == -- -S -- +P.
2 SB ImS ImS

(64)

Thus it will be equivalent to prove that S > 0, SB < °and Z < 0, since BC = (dF3/dY) !:J.
is negative at Y> L II (see Figs 5(a) and (b». Accounting for L I1 > 0, L 22 > O,!:J. > 0, and
eqns (61h,3' these inequalities are also equivalent to:

with k == -!:J. +L I2 + L 21 . Using the constitutive equations (27), one obtains:

Noticing that t(L II ) may be rewritten in the form

(67)

and introducing the expression from eqn (65) of S(L I, ) into eqn (67), one readily deduces
that t(L II ) is strictly negative for L II > I. It is also an easy matter to prove the inequalities
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(68)

and this finishes the proof, since S is linear in Y, whereas SB and i are quadratic.
(4) Finally, we exclude flutter for a double root Y in the interval] 1, LlILn [ when L ll < 1

(see Fig. 5(e». Indeed, in this case, the slope of Fj, and thus BC, is positive at the double
root. On the other hand, one can show that SB (1) and d SB;dY (1) are negative here since

L'I < 1:

SB(1) = -(5(1»2 < 0

d/'o- d_ _
dySB(1) = dyZ(1) = -2[(1 +Ln )S(1)+2L22 ] < 0

(69)

Thus the quadratic function SB( Y) is negative in the interval] 1, LliLd; hence, at the onset
of flutter, E(l) E(2) is negative because the roots (N("»2 are complex conjugate. But, if it is
so, Re (NIl) N(l» is negative according to eqn (A13) ; this is a contradiction with the fact
that N(l) Nl2) = F 3 and F) is positive in the interval of interest, as is clear in Fig. 5(e). As
announced, flutter is thus excluded in this interval.

Thus, in summary, the only case where the boundary condition is satisfied occurs when
the double root Y is smaller than 1 while LIt < min (LlIL n , I), an inequality that cannot
occur for associative plasticity, and then Be is positive. 0

Lemma 3.8. For BC = 0, the discriminant R is negative.
The proof is as follows: we assume first that R is positive and then we show that this

cannot be true.
If R is positive, BC is well defined and may be rewritten in terms of constitutive

coefficients only. By using eqn (B8), where the roots of the cubic are expressed in terms of
the new coefficients u and v defined by eqn (B7), BC may be rewritten as:

(70)

The condition BC = 0 implies that the third root x~ of the cubic equation (cf. eqn (B8» is
equal to

2 I c, Ll
X 1 = --~+u+v= ---~

. 3 Co 1-L n '
(71 )

where the definitions (eqn (45» of Co and c, have been used. Inserting this root into the
cubic equation (44), we obtain:

(72)

The sum and product of the two other roots xi and X~ are, respectively:
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(73)

where, once again, use of the definitions (eqn (45)) of Co, c], and C3 has been made.
Accounting for eqns (72), one deduces that x~ and x~ are roots of the quadratic equation

(74)

whose discriminant is found to be positive; thus the three roots xL x~, and X~ are real
and the discriminant R of the cubic equation (44) should be negative, in contradiction with
the assumption R > O. 0

Remark 3.9. The special case L 22 = 1 does not introduce difficulties. Indeed, Prop­
osition 3.5 still holds provided that R is set equal to the discriminant of the quadratic
equation (44) with sign changed, i.e., R = _~2 (~2+4L12 L 2I ). Moreover, double roots
can occur only for non-associative flow rules since L I2 L 21 should be negative.

3.6. Quantitative discussion
Since we have not been able to give an explicit expression for the plastic modulus at

the onset of flutter instability, we perform a parameter analysis to detect directly the onset
of flutter and to check the validity of Proposition 3.5. In this study, we vary, within
physically acceptable limits and in a discrete but rather exhaustive manner, the Lame
modulus A, the triaxiality angle e, the relative order between 51], 522 , and 533 , the angles
Xand lj;, and the modulus H. The circumstances in which surface flutter instability occurs
before the onset of other surface or body instabilities are analysed. Only the essential
features of the results of that analysis are reported next.

It is observed that, in all the cases where the onset of flutter instability is reached, we
always have 511 > 522 (no restriction on the relative position of 533 is observed). We also
observe that flutter instability is obtained for unusual (high) and very distinct friction and
dilatancy angles. For instance, with the constitutive parameters:

A = 0.25
e= 0.14(n/3) (511 = 0.8078; 522 = -0.3010; S33 = -0.5068)

and
tan X = 0.2,

no flutter instability is detected before the onset of a stationary surface wave for any tan
lj; E [0.2, 1.0] and H- 1 > O. Performing similar calculations with tan X = 0.4, surface flutter
instability is observed prior to other instabilities only when tan lj; = 0.9 and H- I = 0.3917;
with tan X= 0.5, surface flutter instability is detected when tan lj; = 0.8 and H- 1 = 0.4114.

As a result of this systematic numerical parameter analysis, it seems that flutter
instability is excluded for the usual constitutive parameters.

It is also observed that, whenever the onset of flutter instability is reached, the (real)
speed of the "prolongation" in the plastic range of the elastic Rayleigh wave coalesces with
the (real) intermediate root of the cubic equation (44). At this stage, both solutions have a
surface character, even if, along some phase of the incrementation process between H- I = 0
and the critical value of H- I

, one or both of them do not have such a character (recall the
comments preceding the proof of Lemma 3.7 above). The evolution of the three roots of
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Fig. 6. Evolution of the three roots of the cubic equation (44) with H I

the cubic equation (44) with H- 1
, shown in Fig. 6 for the last case mentioned above (tan

X = 0.5), is typical. At the onset of flutter instability, the two smaller roots of eqn (44)
coalesce and, similarly to what happens in finite dimensional systems (Huseyin (1978», the
partial derivative of the "control parameter" H- I with respect to X 2 is null at the onset of
flutter. This property is implied by Proposition 3.5 and is due to the fact that F(X2,H- I

)

defined by (eqn (44) is a polynomial with respect to both X 2 and H- 1
• Thus, in the vicinity

of a double root in X 2, dF = (oFjoX 2) dX2+ (uFjcH- 1
) dH- I = 0 implies cH- 1joX2 = 0

because uFjcH- I is not zero. The evolution in the complex plane of X 2, N('l, and N(2 l for
that case is shown in Figs 7 and 8 (case (a) 512 = 0).

4. ELASTIC-PLASTIC SOLIDS NON-COAXIAL WITH THE FREE BOUNDARY

Non-coaxiality of the orthotropy axes and of the rate-traction-free boundary will be
shown to give rise to flutter instability for non-associative flow rules right at the incipience
of plasticity, i.e. for H- 1 ~ O. The variational formulation of Section 2.3 will be used to
establish that the derivative dX2jdH -I at H- I = 0 is complex if the normal to the boundary
is not an axis of orthotropy of the constitutive tensor of plastic moduli (Section 4.2). A
linearized analysis of the field equations will also give additional information on the mode
shape, i.e. dN(I) jdH- I and dN(2)jdH- 1 at H I = 0 (Section 4.3). The evolution, with H- I

increasing monotonously from 0, of the triplet (X 2
, N( I), N (2

)) is analysed quantitatively in
Section 4.3: it displays the respective influences of the features that trigger flutter instability,
namely, deviation with respect to associativity and non-coaxiality with the boundary.

We also show in Section 4.5 that the onset of stationary surface waves is intrinsic, that
is, it does involve material properties only and it does not discriminate among orientations
of the rate-traction-free surface.

Notice that the theoretical results of Sections 4.2 and 4.5 do not require the constitutive
equations to satisfy deviatoric associativity.

We first rewrite the constitutive equations in a format adequate to our present purpose.

4.1 Constitutive equations
Assuming as in Section 3 that the horizontal direction C3is an orthotropy direction for

the solid under consideration, the rate-constitutive equations (6) may be expressed in the
(Cl> C2, c3)-axes in the form:
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Fig. 7. Evolution in the complex plane of X' for several values of 5" and for H 'varying from 0

to 0.458 :
(a) 5" = 0.8078..~" = -03012.5" = -0.5066..~" = O.
(b) 5" = 0.807..~" =-0.301, .~" = -0.506.5" = 0.0068
(c) 5" = 0.81. 5" = -0.30. 5 n = -0.51, 5" = 0.0325
(d) .~" = 0.8. 5" = -0.3 . .'5" = -0.5. '~i2 = 0.1.

0.50.1 0.1 0.3 0.'
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Fig. 8. Evolution in the complex plane of N1
I I and N1'1 for several values of 5'2 and for H 'varying

from 0 to 0.458 :
(a) 5" = 0.8078. 5" = -0.3012..~" = -0.5066. '~12 = O.
(c) 5 11 = 0.81, .~" = -0.30.5" = -0.51, 5" = 0.0325
(d) 5, 1= 0.8..~" = --0.3..~" = -0.5•.~" = 0.1.
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~II = Lll~ll +LI2~22 +2L13~12 }

0'22 = L 2l S l1 +L22S22+2L23SI2 .

0"12 = L 31 ell + L32e22 + 2L 33 e l2

(75)

Although the results obtained in this section do not require deviatoric associativity, one may
identify the coefficients Lij appearing above for an elastic-plastic solid obeying deviatoric
associativity: the formulas in eqns (27)-(32) still hold and

L i3 = Eii12

L 3j = E 12ii (76)

Trivially, these equations reduce to those of Section 3 if the horizontal axis e l and the
vertical axis e2 are orthotropy axes, i.e. if S12 = O.

4.2. Surface flutter instability: a first general result
The sesquilinear form of eqn (23) may be equivalently written in the form:

(77)

where

(78)

The constitutive tensor may be split into an elastic part, E~jkm, which possesses the
major symmetry Eijkm = E%mij, and a plastic part, E~kl'''' which in turn may be split into a
symmetric part Elfkm and an anti-symmetric part E't/km with respect to the pairs of indices ij
and km:

(79)

(80)

(81)

(82)

Accordingly, the sesquilinear form of eqn (23) may be split into

where

ae(V,W) = reo DjWjEijkmDn,vkdx2,

aSP(V,W) = rex: DiWiE~JtmDn,vkdx2'

(83)

(84)

(85)
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(86)

Note that the sesquilinear forms ae(V, W), aSP (V, W), and aap(v, W) are all symmetric in
the sense of eqn (24) ; clearly, from the definitions of eqns (3), eqns (79)-(82), and eqns
(85) and (86), both aSP(V, W) and aap(v, W) are independent of H.

The eigenproblem (eqn (21» may now be expressed as:

The elastic case is recovered by setting H- I = 0 in eqn (87) and thus obtaining

(88)

Taking into account eqns (22) and (84), the complex conjugate of eqn (88) yields

(89)

In eqns (88) and (89), X R and VR refer to the elastic Rayleigh wave-speed and eigenmode,
respectively.

In order to study the eigenproblem (eqn (87)) in the neighbourhood of the (known)
elastic case (eqn (88»), we compute the first variation of eqn (87) at H- 1 = 0, all constitutive
parameters being held fixed except H- I :

ae(<5V, W) + <5(H- 1 )aSP(VR, W) + i<5(H- 1)aap(vR, W)

=X~(<5V,W)+<5(X2)(V,W), VWEV. (90)

Setting W = VRand using eqn (89), we obtain

and thus

(
d(X2)) a'P(VR,VR) .aap(vR,vR)

d(H- ' ) WI~O = (VR'VR) +1 (VR'VR) .

(91)

(92)

For an orthotropic elastic-plastic solid with the direction e3 as a principal direction of
orthotropy, the constitutive moduli involved in aap(vR, VR) are given below (the cor­
responding values in the case of deviatoric associativity are also indicated in brackets) :

ap _ ap _ L 12 - L 2 1 ~. ~
E 1122 - -E2211 - - Y'

2

(93)

Note that all the equalities in eqn (93h hold for any orthotropic elastic-plastic solid with
the direction e3 as an orthotropy direction, even if deviatoric associativity does not hold.
The sesquilinear form aap(vR, VR) can then be expressed as



2180 B. Loret et at.

Because VIR is real and V;R is imaginary (see Appendix C), the coefficient of:F in eqn
(94) vanishes:

(95)

The in-axis components of the tensor moduli therefore do not contribute to aap
. In the

coaxial case, Iff in (eqn (93)) is zero. Thus, in this case, we have 1m {(j (X 2
)} = 0, a result

that complements the developments of Section 3.
Moreover, from eqns (C5) and (C6), we have:

Performing the integration of eqn (96) between - 00 and 0 and taking into account the
results in Appendix C, we obtain

(97)

which is clearly different from zero in the non-coaxial case (Iff i= 0). Consequently,
1m {(j(X2

)} i= 0 in this case. This ends the proof of Proposition 4.1, which is stated below.

Proposition 4.1. For an orthotropic elastic-plastic half-space with one principal direc­
tion of orthotropy parallel to its boundary, the imaginary part of the derivative of the
square of the wave-speed with respect to H~ I calculated at H- ' = 0 is different from zero
if and only if the normal to the boundary of the half-space is not a principal direction of
orthotropy and the flow rule is non-associative. 0

4.3. Field equations and linearization
We seek solutions to the field equations that are obtained by superposition of surface

waves of the form of eqn (33). Satisfaction of the field equations (14) results in a system of
two linear equations for the components VI and V 2 :

Similarly to eqn (79), the dependence of the constitutive moduli on H- I can be made
explicit in eqn (98) by splitting the coefficients LIj into elastic and plastic parts:

LIj = L~i+H' I L~, i,j = 1,2,3. (99)

The vanishing of the determinant of eqn (98) yields a relation linking N, X 2
, and the

constitutive coefficients:
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¢(N,X2
, H- 1

) = N 4 C 1I +N 3
[ - C I3 - C 3 d +N 2 [(C33 -C12 - C21 ) -(L22 +L33 )X2

]

+ N[(C23 + C32 ) - (L 13 + L 3I + L 23 +L 32 )X2
j + C22 - (L ll +L33 )X2+X4

= 0, (100)

where the coefficients Cij, i,j = 1-3 are the cofactors of the constitutive matrix L = [Lil
Linearization of the above equation around each of the two Rayleigh solutions N~),

IX = 1, 2, yields

(101)

where (dX2/dH-I)w1 ~O is given by eqn (92), and (o¢/8NI»)wl ~ 0 can be checked to be
different from zero for both IX = 1 and IX = 2. The detailed expressions for the quantities
involved in eqn (101) are given in Appendix D.

Remark 4.2. Since the quartic equation (100) in N is not biquadratic, we are no longer
sure that only two of its solutions satisfy the decay condition of eqn (34). However, in the
elastic case (H- I = 0) and for X 2 = xL it is known that a pair of solutions to eqn (100),
N~) and NIf), strictly satisfies and another pair strictly does not satisfy that decay condition.
By continuity, the same situation then still holds for some range of small values of H- I

•

Since, for this continuation of the Rayleigh solution, we already have flutter (Proposition
4.1), we shall not study what happens with the continuations of the other X2 solutions to
eqn (44) at H- I = 0 that do not correspond to elastic surface solutions.

4.4. Surface flutter instability: further quantitative results
The boundary conditions of eqn (19) have been incorporated in the variational for­

mulation. However, in order to perform a parameter analysis, we shall give them a tractable
form in terms of the triplet (X2, N.!), N 2»). Indeed, proceeding as in Section 3.2, we obtain
a linear system of two equations, which may be written, for instance, in terms of the
components U\», IX = I, 2 :

atl [L33 [N(a) +wIa )] +L 32 N(a)w(a) +L 31 ]U\,) = 0 )

2 '

L [L21 +L23NC»(L22NI»+L23)wI»]u\a) = 0
(:(=1

with w(a) obtained from the first of the field equations (98) :

(102)

L 11 + (L 13 +L 3I )NI» +L 33 N(,)2 - X 2

L I3 + (L 12 +L
33

)N(') +L
32

N(,)2
(103)

Indeterminacy of the system of eqns (102) yields a relation linking X 2 and two symmetric
functions of N.!) and N 2), L = N')+N2)and II = N I

) N 2). This relation is of the form

(104)

where

SAS 32-15-E



2182 B. Loret et at.

0.01' r-------------------------------,

0.010

0.00ll

tanljJ= 0.8

tan ljJ =O. 6

tanljJ=0.5

A =0.25 ci =121. 1

tanX=0.5
A A

511 =0.807 522 =-0.301
A A
533 =-0.506 512 =0.0325

Rayleigh

wave

0·00\.~0-----0...-2--~--0 ....,-----.....:=::::::~ ....~-----1t.0
Re (X2)

Fig. 9. Evolution in the complex plane of X 2 for different values of the non-associativity parameter
tan X- tan IjJ and for H- l varying from 0 to 0.458.

a= CII

b = -11-L II CII +L33 C 12 -L33CIIl:2 +(L33 C I3 -LI3 CII )l:+

[(L 33 - L I2)CII + L 32 C I3]I1- L 32 CII Ill:

C = -CIIC2IIl2+CIIC22l:2+(LI311-CI3C22)l:+

[11(L]2 + L 33 ) - C I3 C 23 - 2CII C22 ]I1 + CII C23 Ill: + L II 11- CI2 C22

(105)

The numerical results presented in this section are obtained by incrementing H- I (starting
at the known elastic Rayleigh situation (Xi, N~), N~))) and, at each stage, numerically
solving the system of three non-linear algebraic equations:

¢(NII ),X2 ,H- I
) = 0

¢(N(2),X2,H- I ) = 0

y(N(I),N(2),X2,H- I ) = 0

field equation for mode I }

field equation for mode 2

boundary condition

(106)

for the triplet (X2, Nl I), N (2)) with 1m (Nl')) < 0, for both 'Y. = I and 'Y. = 2. In Figs 7 and 8,
we show the influence of the non-coaxiality parameter SI2 on the evolution in the complex
plane of X 2

, N I
), and N2). In contrast to the coaxial case (S12 = 0), X2 becomes complex

right at the incipience of plasticity; the value of the imaginary part of X 2 near H- I = 0 is
roughly proportional to the parameter S]2. In the non-coaxial case, the values of N(I) and
N(2) acquire real parts at the incipience of plasticity, whereas, in the coaxial case, this
happens later at a point that does not correspond to the onset of flutter; in the latter case,
the onset of flutter occurs much later, at the point at which the equalities
Re (N(I)) = - Re (N I2)) and 1m (N(I)) = 1m (N(2)) cease to hold. Figures 9 and 10 display
the influence of the non-associativity parameter tan X- tan ljJ on the evolution in the
complex plane of (X 2

, NIl), N(2)). Clearly, flutter instability does not occur in the associative
case and, in the non-associative non-coaxial cases, the onset of flutter instability coincides
with the incipience of plasticity. The value of the imaginary part of X 2 near H- I = 0 is
proportional to the difference tan x-tan ljJ. Moreover, the values of N(I) and N 2

) acquire
a real part right at the incipience of plasticity even in the associative case, since, in this
example, S]2 is different from zero. A comparison between the linearized solution (eqns
(92) and (101)) and the solution of the non-linear system of equations (106) is shown in
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Fig. 10. Evolution in the complex plane of ,'.I' II and ,'.11"1 for different values of the non-associativity
parameter tan X- tan i/J and for H 'varying from 0 to 0.458.

Figs 11 and 12. Figures 7-10 display clearly the difference between the coaxial and the non­
coaxial situations: in the coaxial case, flutter, if it occurs. appears well inside the plastic
regime, whereas, in the non-coaxial case, it occurs right at the incipience of plasticity with
intensity roughly proportional to the non-coaxiality and non-associativity parameters.

4.5 Stationary surj'ace waves
In the present non-coaxial case, the field equations may be advantageously written in

the orthotropy axes, say (e 1, e2, e,), f3 being the angle defined by e1 and e l (see Fig. 13). Let

0.010 r-------------------------------,

II =0.25

tanx =0.5

~11 =0.8
A

533=-0.5

e
Cs =121.1

tan ljJ =0.6
A

522 =-0.3
A

512 = 0.1

0.00!I

Rayleigh
wave

o·~.o 0.2 t.o

Re ( X2
J

Fig. 11. Evolution in the complex plane of xc. Comparison between the linearized solution and the
solution of the non-linear equations.
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Fig. 12. Evolution in the complex plane of Nil' and NI". Comparison between the linearized solution
and the solution of the non-linear equations.

us recall that, for a solid with deviatoric associativity, the orthotropy axes are the axes of
the deviator S (eqn (32)). In these axes, the field equations are formally similar to the
coaxial equations, that is

(107)

with IV = H2 /H] and So and Po given in terms of the constitutive coefficients Lij in the
orthotropy axes:

(l08)

and

(109)

Since eqn (107) is biquadratic, two roots IV with negative imaginary parts and two roots
with positive imaginary parts are available in the hyperbolic regime; if one assumes
1m (H]) = 1m (nl) = 0, then there exist two solutions N = n2/n, with negative imaginary
parts since 1m (N) = 1m (IV)H]/(cos f3. n,).

Now, observe that we can write the boundary conditions of eqn (9) in the orthotropy
axes. These conditions may be recast in the single equation

e,

Fig. 13. Orthotropy axes.
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(110)

with IT = Nt l
) j\/t2), f. = l::lI!)+N(2). Owing to the decay condition, IT cannot be zero;

similarly, in the hyperbolic regime, the second factor in eqn (110) can be shown to be non­
zero. Thus the condition for the onset of a stationary surface wave is

ti = o. (II 1)

Moreover, even if the coefficient matrix L is not a tensor, L1 = det L is independent of [3,
i.e. ti = L1. Hence the onset of a stationary surface wave involves only material properties,
that is, it does not discriminate among directions of free surfaces. This is in strong contrast
to the situation that prevails at the onset of flutter instability as demonstrated above.

5. SUMMARY AND CONCLUSIONS

In the general context of semi-infinite elastic-plastic bodies with no traction rates
applied on the boundary, it has been shown that, like body flutter instabilities, surface
flutter instabilities are excluded for associative flow rules.

For elastic-plastic solids with deviatoric associativity, loss of hyperbolicity is known
to coincide with the onset of stationary body waves, i.e. body flutter instability is excluded
(Loret et al., 1990). The following results were obtained when the directions defining the
normal and the tangent to the rate-traction-free surface were axes of orthotropy of the
constitutive tensor, or equivalently principal axes of the unit deviator 51 :

• the onset of stationary surface waves detected by L1 = 0 (eqn (56)) may occur before
or after the onset of stationary body waves detected by SBo = 0 (eqn (47));

• the onset of surface flutter instabilities that occur prior to both stationary body and
surface waves is detected by the pair (R = 0, Be> 0) (eqn (59)), which implies in
particular the existence of a double root to the cubic equation (44) for the square of
the wave-speed-like quantity X 2 (eqn (18)); the associated wave-speed c is, like the
Rayleigh wave-speed for elastic solids, smaller than the elastic shear wave speed c~;

indeed, loosely speaking, the surface flutter phenomenon is due to the instability of
the prolongation well inside the plastic range of the elastic Rayleigh wave as explained
in Section 3.5.2.

For elastic-plastic solids having orthotropic constitutive tensors and having one of the
orthotropy axes tangent to the rate-traction-free boundary, it has been shown that

• whenever the normal to the rate-traction-free boundary does not coincide with one of
the orthotropy directions of the constitutive tensor, the onset of surface flutter insta­
bilities coincides with the incipience of plasticity (H = + CIJ in (eqn (3)) for any non­
associative flow rule (cf. Proposition 4.1); in the deviatoric associativity case, this
happens when the normal and the tangent to the boundary are not principal axes of
the unit deviator 51; in these circumstances, the Rayleigh wave becomes unstable as
soon as the plastic range is entered; this result is in strong contrast with the result for
the coaxial case above;

• the onset of stationary body waves involves material properties only, i.e. it does not
discriminate among the orientations of the rate-traction-free boundary; this result is
in contrast with the results concerning the onset of surface flutter instabilities, where
the orientation of the boundary with respect to the material orthotropy axes is of
utmost importance.
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APPE:'-JDlX A

Properties of the solutions ofa biquadratic equation with complex coefficients
We are interested in the strictly complex solutions of the biquadratic equation with complex coefficients S

and P:

(N')'-SN'+P=O. (AI)

Out of the four complex solutions to eqn (A I ). we select those two, say, N'I) and N'2 i, whose imaginary parts are
strictly negative. The sign of the imaginary part of the product N' I) N''', if it is not zero, will then be shown to be
related to the sign of the imaginary part of either S or P.

In the proof below, [.]' 2 denotes the square-root operator over positive real numbers. The analysis will make
use of three coefficients A, B, and C:

A =~Re(.'))lm(S)_~Im(p); }

B = Wm' (S) - Re' (S)] + Re (P);

C = [ _ ~ + {(~)' + A'}' ']"

The squares of the solutions to eqn (A I) may be expressed by:

(N''')'=f)'''+iE''', 7.=1,2,

(A2)

(A3)
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where:

.ifA=OandB?O, D"'=~Re(S); E\')=~lm(S)+(T[B]I!2

.ifA=OandB~O, D"'=~Re(S)+(T[-Blli2; E"'=~lm(S).

where (T = ( - I)'. Consequently, the four solutions to eqn (A 1) can be cast in the form:

[
E'" ]• if E") of 0, N'" = .1"" F'" +i--

2F'"

where Sl" can take the two values ± I and, for E'" of 0, F I
" is a strictly positive real number:
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(A4)

(AS)

(A6)

Leaving apart real solutions, we select out of the four complex solutions those whose imaginary parts are strictly
negative: notice that this selection criterion defines the scalars .1"')

In order to prove the assertion announced at the beginning of this Appendix, we shall delineate four cases,
as follows.
Case I: E'" E(1) > O.

According to the selection criterion, we have S"'S(2) > 0, and, from the expressions for N'" and N'" in eqn
(AS)(, the sign of 1m (!v"'N(2I) is equal to the sign of the E""s, say, s. Scrutinizing the expressions for E'" in eqns
(A4), we deduce that 1m (S) is not zero and moreover 1m (S) = s. Thus we have:

(A7)

Case 2: E,I'E(1) < 0.
First let us recast N"I in the following format:

(A8)

where the angle (j'" is the argument of (N"')2 ; hence, from eqn (A3) :

(A9)

Thus, since .1''' 1.1'(1) = - 1, the imaginary part of N'" N(2) is equal to - sin (j(\) - sin (j,2) - sin (jll) cos (ji l
)

-sin (j'2JCOS(jII'. Using the definitions of (j'" (eqn (A9), of D'" and Ei" (eqns (A4)), and of A (eqn (A2)1), one
can easily show that the sum of the last two terms is equal to :

-Im(P)
!/=---.

GI I 'G(1)

Furthennore the sum of the first two terms is equal to !/v, where

E(l)D"'-E'2JDI I )

E,IIG(2, _E(2'G"J

Since E(I) and E(1) have opposite signs, the absolute value of v is strictly smaller than one. Consequently:

(AIO)

(All)

E(ll E'" < 0 = {ifIm (P) of 0,
ifIm(P) = 0,

Also notice that in this case:

then sign 1m (N, I )N(2)) = -SignIm(p)}

then 1m (N"'N(2 J ) = ° . (AI2)

(AI3)
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Case 3 : £,,) = 0, D"I < °for iX = I, 2.
The analysis of the expressions of E") and D'" (eqns (A4» implies:

Case 4: £",) = 0, D",l < 0, £'0,1 # 0, iX, # :x,.
Proceeding as in the previous case and scrutinizing the expression for £"J (eqns (A4» one obtains

1m (S) = £"'), and analysis of the various possibilities yields the following:

£",) = 0, D",I < 0, £",1 # 0=signIm(N"lN'2) = signIm(S) = sign£,o,J. (AI5)

APPENDIX B

Analysis of the cubic equations (44) and (45)
The cubic equation (44)

F(Y) = CO Y' +c, Y' +c, Y +C3 = ° (BI)

with coefficients defined by eqn (45), Co # 0, has two complex roots if the discriminant R is positive. The
discriminant R may be defined either through two parameters p and q:

I ,
P = -(3coc, -c\),

3C6
(B2)

as

(P)' (q)'R = 3 + :2

or directly in terms of the coefficients Cb k = 0, 3 :

Inserting the definitions of eqn (45) in this relation yields:

where:

do = -4

d, = 12L" +4L" L" 1
d, = -12L~2-l2LIlL~,-18LIlL,,-L~IL,,+27L'2 .

d, = 4Li, + 12L Il Li, +20LLL~2-36LIlL~2

d4 = -4L Il Li2 +8LT,Li2 -4Li,L~2 < 0

(B3)

(B4)

(B5)

(B6)

When the discriminant R is positive, the roots Y" Y2 = Y, and Y3 may be expressed through the two additional
coefficients u and v satisfying uv = - pI3 and u' +v' = ~ q:

as follows:

[ J
li3 [ J'!3U= - ~ +[R]'·2 , V = - ~ _[R]'/2

I C u+v [3]'12
Y, = - - -' - -- +i--(u-v)

3 Co 2 2

I C u+v [3]'/2
Y, = - - -' - -- -i--(u-v)

3 Co 2 2

I c,
Y, = ---+u+v

. 3 Co

(B7)

(B8)
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When the discriminant is zero while q is not, eqn (BI) admits a double root Y , = Y, and a simple root Y,:

2189

I c, 3 q
Y - Y - ------

I - ,- 3 Co 2 p'
I c, q

Y] = ---+3-.
. 3 Co P

(B9)

APPENDIX C

The (elastic) Rayleigh waves
The equations established in Section 3.2 and the tool developed in Appendix A may be applied to the purely

elastic case to recover some results on the Rayleigh waves that are needed in several sections of the paper.
First, let us note that, since L ll = L'2 = A+2, L 12 = L 21 = A,,1. = 4 (A+I), and owing to the restriction

(I) on the Lame modulus A, one always has the situation depicted in Fig. 5(a), where I < ,1./L22 :;; L
"

. The cubic
equation satisfied by the wave-speed like scalar X' (eqn (44n, simplifies to:

[
A+4i3 A+ IJ

F(X') = (A+I)(A+2) -(X')'+8(X')'-24 A+; X'+16
A

+
2

.

Its discriminant R, given by

R = ,1.4[11 (A+2)' -62(A+ 2)' + 107(A +2) -64],

(CI)

(C2)

has a single root at Ao ~ 1.11 and R ~ 0 according to A ~ Ao.

As is apparent from Fig. 5(a), there always exists a real positive root X' < I ; if R < 0, two additional real
roots greater than L

"
are available. Whatever the nature of X', one has, from eqns (37):

A+3" (A+I ')'S = -2+ A+2X, S -4P = A+2X (C3)

and, for a real X', P is positive (Remark 3.1). Hence for the real root X' < I, S is negative, the values of (N'X')'
are real negative, and the boundary condition ofeqn (43) which requires N(I)N,2) = F, (X') < 0 (cf. Fig. 5 (a»,
is satisfied. Thus the wave associated with this root is the surface wave with wave-speed C < cs, usually termed
the Rayleigh wave. The corresponding values of X' and N'x, are identified by the subscript R and satisfy

(C4)

while the corresponding eigenfunctions VkR are

(C5)

where n , is a real number and, for our purposes, the arbitrary amplitude U may be chosen to be real.
For the two real roots X' greater than L

"
, we have S, P, and S' - 4P positive, so the values of N"" are real

positive and the associated wave is a plane wave.
Finally, let us consider the two conjugate complex roots X' when R> o. Using the definitions of A, B, and

C (eqn (A2», one has:

We also have:

A = ~Im {(X')'};B = -k' Re {(X'f}; C = IkRe (X')I;k = 2~:12).

Im(S) A+3 ,
-2- = 2(A+2) Im(X).

(C6)

(C7)

Thus, according to eqn (A4)" the product £,-11£,-') of the imaginary parts of the values (eqn (A3») of (N'X»)' is
positive:

E ,I)E(') = Im'(X') 0
A+2 > . (C8)

Consequently, the boundary condition of eqn (43), would require, according to eqns (A7), (C7), and (I), the ratio
BC = {1m (M'1M'I)/lm (X)'},1. to be positive:
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BC = 2(1 + A)[2- Re (X')] > o. (C9)

Now, from eqn (Cl), the sum of the roots (X'), +2 Re (X2
), with (X2

), < 1 and (X')2 = (X2>, complex is equal
to 8, so that Re (X2

), > 7/2. Consequently, BC is negative and the boundary condition of eqn (43) is not satisfied,
so that these two roots do not correspond to an actual surface wave.

APPENDIX D

Linearization of the field equation around the elastic solution
We differentiate eqn (100) at the single surface solution, which is available in the elastic situation (the Rayleigh

wave). The implicit independent variable of the differentiation process is the inverse of the modulus H. The terms
involved in eqn (101) are given below for deviatoric associativity:

{- Nk"J'[L~2 + (A+2)L~J]

+Nf,")'[A(L~3 +L),) - (A+2)(L~3 +L~l)]

+N\<,J'[ -(A+2)(L~, +L~,) + (A+ 1)(L~2 +L~d+2AL~3 + (L~, +L~3)X~]

+Nk"I[-(A+2)(L~3 + L~,)+A(L~3 +L~d +(L~3 +L~l +L~3 +L),)X~]

-[L~l +(A+2)L~3]+(L~, +L~3)X~},

where the coefficients L'ij are defined by eqn (99),

(D!)

r
A+IX2

= A+2 R

\-(A+I)X~
ifC( = I

ifIX = 2,

(02)

( Cf) = 4(A + 2) Nf,"l' + 2[2(A + 2) - (A + 3)X~]Nk"1
aNi") w' ~ 0

= (-I)'2(A+ I)X~Nk"1 #- O.

To calculate

one needs:

(D3)

(D4)

(D5)

[
Nil) N(l)N(21' 4! _N(lIN I2) ( . . N II1 )]

+L~3 -3N~)+__R_ + _R__R_ + V R R N~IN1(/:)- _R_

"0 2N1(/:)' 2 N~)+N~) N1(/:)

and aap(VR' VR)' given byeqn (97).

(D6)


